Lo strumento GRAVITY dell’ESO installato sul VLTI (l’interferometro del Very Large Telescope) è stato usato dai ricercatori di un consorzio di istituti europei, tra cui l’ESO, per osservare lampi di radiazione infrarossa provenienti dal disco di accrescimento intorno a Sagittarius A*, l’oggetto massiccio nel cuore della Via Lattea.
I lampi osservati forniscono la conferma, da lungo attesa, che l’oggetto al centro della nostra galassia è veramente, come da lungo ipotizzato, un buco nero supermassiccio. I lampi hanno origine nel materiale che orbita molto vicino all’orizzonte degli eventi del buco nero – rendendo queste le osservazioni più dettagliate mai fatte di materiale in orbita così vicino a un buco nero.
Attrazione fatale
Mentre parte della materia nel disco di accrescimento – la cintura di gas in orbita intorno a Sagittarius A* a velocità relativistiche – può orbitare intorno al buco nero in tutta sicurezza, tutto ciò che si avvicina troppo è destinato a essere attirato al di là dell’orizzonte.
Il punto più vicino a un buco nero in cui della materia possa orbitare senza essere irresistibilmente attratta verso l’interno dall’immensa massa è noto come l’orbita stabile più interna, e da qui hanno origine i brillamenti osservati.
“È sconvolgente osservare il materiale che orbita intorno a un buco nero massiccio al 30% della velocità della luce”, si meraviglia Oliver Pfuhl, uno scienziato dell’MPE. “La straordinaria sensibilità di GRAVITY ci ha permesso di osservare i processi di accrescimento in tempo reale, con un dettaglio senza precedenti.”
Queste misure sono state possibili solo grazie alla collaborazione internazionale e alla strumentazione all’avanguardia utilizzata. Lo strumento GRAVITY che ha reso possibile questo risultato combina la luce di quattro telescopi del VLT dell’ESO per creare un super-telescopio virtuale di 130 metri di diametro ed è già stato utilizzato per sondare la natura di Sagittarius A*.
La teoria della relatività generale di Einstein alla prova dei fatti
All’inizio dell’anno, GRAVITY e SINFONI, un altro strumento installato sul VLT, hanno permesso allo stesso gruppo di misurare con precisione il passaggio radente della stella S2 mentre attraversava il campo gravitazionale estremo vicino a Sagittarius A* e per la prima volta ha rivelato gli effetti previsti dalla relatività generale di Einstein in un ambiente così estremo. Durante il passaggio ravvicinato di S2, è stata osservata anche una forte emissione infrarossa.
“Stavamo monitorando S2 da vicino e, naturalmente, teniamo sempre d’occhio Sagittarius A*”, spiega Pfuhl. “Durante le nostre osservazioni, siamo stati abbastanza fortunati da notare tre lampi brillanti provenienti dal buco nero – una coincidenza fortunata!”
Il paradigma di buco nero supermassiccio
Questa emissione, da elettroni molto energici e molto vicini al buco nero, era visibile come tre brillamenti molto intensi e corrispondeva esattamente alle previsioni teoriche per i punti caldi (hot spot) in orbita vicino a un buco nero di quattro milioni di masse solari. Si pensa che i brillamenti provengano da interazioni magnetiche nel gas caldissimo che orbita intorno a Sagittarius A*.
Reinhard Genzel, del Max Planck Institute for Extraterrestrial Physics (MPE) di Garching, in Germania, che ha guidato lo studio, ha spiegato: “È sempre stato uno dei progetti che sognavamo di completare, ma non osavamo sperare che sarebbe diventato possibile così presto.” Riferendosi all’assunzione che Sagittario A* sia un buco nero supermassiccio, Genzel ha concluso che “il risultato è una conferma clamorosa del paradigma di buco nero supermassiccio.”